Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 974, 9036 i.e. 2 the largest integer that leaves a remainder zero for all numbers.
HCF of 974, 9036 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 974, 9036 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 974, 9036 is 2.
HCF(974, 9036) = 2
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 974, 9036 is 2.
Step 1: Since 9036 > 974, we apply the division lemma to 9036 and 974, to get
9036 = 974 x 9 + 270
Step 2: Since the reminder 974 ≠ 0, we apply division lemma to 270 and 974, to get
974 = 270 x 3 + 164
Step 3: We consider the new divisor 270 and the new remainder 164, and apply the division lemma to get
270 = 164 x 1 + 106
We consider the new divisor 164 and the new remainder 106,and apply the division lemma to get
164 = 106 x 1 + 58
We consider the new divisor 106 and the new remainder 58,and apply the division lemma to get
106 = 58 x 1 + 48
We consider the new divisor 58 and the new remainder 48,and apply the division lemma to get
58 = 48 x 1 + 10
We consider the new divisor 48 and the new remainder 10,and apply the division lemma to get
48 = 10 x 4 + 8
We consider the new divisor 10 and the new remainder 8,and apply the division lemma to get
10 = 8 x 1 + 2
We consider the new divisor 8 and the new remainder 2,and apply the division lemma to get
8 = 2 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 974 and 9036 is 2
Notice that 2 = HCF(8,2) = HCF(10,8) = HCF(48,10) = HCF(58,48) = HCF(106,58) = HCF(164,106) = HCF(270,164) = HCF(974,270) = HCF(9036,974) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 974, 9036?
Answer: HCF of 974, 9036 is 2 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 974, 9036 using Euclid's Algorithm?
Answer: For arbitrary numbers 974, 9036 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.