Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9748, 1817 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 9748, 1817 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 9748, 1817 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 9748, 1817 is 1.
HCF(9748, 1817) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 9748, 1817 is 1.
Step 1: Since 9748 > 1817, we apply the division lemma to 9748 and 1817, to get
9748 = 1817 x 5 + 663
Step 2: Since the reminder 1817 ≠ 0, we apply division lemma to 663 and 1817, to get
1817 = 663 x 2 + 491
Step 3: We consider the new divisor 663 and the new remainder 491, and apply the division lemma to get
663 = 491 x 1 + 172
We consider the new divisor 491 and the new remainder 172,and apply the division lemma to get
491 = 172 x 2 + 147
We consider the new divisor 172 and the new remainder 147,and apply the division lemma to get
172 = 147 x 1 + 25
We consider the new divisor 147 and the new remainder 25,and apply the division lemma to get
147 = 25 x 5 + 22
We consider the new divisor 25 and the new remainder 22,and apply the division lemma to get
25 = 22 x 1 + 3
We consider the new divisor 22 and the new remainder 3,and apply the division lemma to get
22 = 3 x 7 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9748 and 1817 is 1
Notice that 1 = HCF(3,1) = HCF(22,3) = HCF(25,22) = HCF(147,25) = HCF(172,147) = HCF(491,172) = HCF(663,491) = HCF(1817,663) = HCF(9748,1817) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 9748, 1817?
Answer: HCF of 9748, 1817 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 9748, 1817 using Euclid's Algorithm?
Answer: For arbitrary numbers 9748, 1817 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.