Highest Common Factor of 9749, 3403 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9749, 3403 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 9749, 3403 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 9749, 3403 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 9749, 3403 is 1.

HCF(9749, 3403) = 1

HCF of 9749, 3403 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 9749, 3403 is 1.

Highest Common Factor of 9749,3403 using Euclid's algorithm

Highest Common Factor of 9749,3403 is 1

Step 1: Since 9749 > 3403, we apply the division lemma to 9749 and 3403, to get

9749 = 3403 x 2 + 2943

Step 2: Since the reminder 3403 ≠ 0, we apply division lemma to 2943 and 3403, to get

3403 = 2943 x 1 + 460

Step 3: We consider the new divisor 2943 and the new remainder 460, and apply the division lemma to get

2943 = 460 x 6 + 183

We consider the new divisor 460 and the new remainder 183,and apply the division lemma to get

460 = 183 x 2 + 94

We consider the new divisor 183 and the new remainder 94,and apply the division lemma to get

183 = 94 x 1 + 89

We consider the new divisor 94 and the new remainder 89,and apply the division lemma to get

94 = 89 x 1 + 5

We consider the new divisor 89 and the new remainder 5,and apply the division lemma to get

89 = 5 x 17 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9749 and 3403 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(89,5) = HCF(94,89) = HCF(183,94) = HCF(460,183) = HCF(2943,460) = HCF(3403,2943) = HCF(9749,3403) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 9749, 3403 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 9749, 3403?

Answer: HCF of 9749, 3403 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 9749, 3403 using Euclid's Algorithm?

Answer: For arbitrary numbers 9749, 3403 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.