Highest Common Factor of 9749, 5859 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9749, 5859 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 9749, 5859 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 9749, 5859 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 9749, 5859 is 1.

HCF(9749, 5859) = 1

HCF of 9749, 5859 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 9749, 5859 is 1.

Highest Common Factor of 9749,5859 using Euclid's algorithm

Highest Common Factor of 9749,5859 is 1

Step 1: Since 9749 > 5859, we apply the division lemma to 9749 and 5859, to get

9749 = 5859 x 1 + 3890

Step 2: Since the reminder 5859 ≠ 0, we apply division lemma to 3890 and 5859, to get

5859 = 3890 x 1 + 1969

Step 3: We consider the new divisor 3890 and the new remainder 1969, and apply the division lemma to get

3890 = 1969 x 1 + 1921

We consider the new divisor 1969 and the new remainder 1921,and apply the division lemma to get

1969 = 1921 x 1 + 48

We consider the new divisor 1921 and the new remainder 48,and apply the division lemma to get

1921 = 48 x 40 + 1

We consider the new divisor 48 and the new remainder 1,and apply the division lemma to get

48 = 1 x 48 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9749 and 5859 is 1

Notice that 1 = HCF(48,1) = HCF(1921,48) = HCF(1969,1921) = HCF(3890,1969) = HCF(5859,3890) = HCF(9749,5859) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 9749, 5859 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 9749, 5859?

Answer: HCF of 9749, 5859 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 9749, 5859 using Euclid's Algorithm?

Answer: For arbitrary numbers 9749, 5859 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.