Highest Common Factor of 976, 369 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 976, 369 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 976, 369 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 976, 369 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 976, 369 is 1.

HCF(976, 369) = 1

HCF of 976, 369 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 976, 369 is 1.

Highest Common Factor of 976,369 using Euclid's algorithm

Highest Common Factor of 976,369 is 1

Step 1: Since 976 > 369, we apply the division lemma to 976 and 369, to get

976 = 369 x 2 + 238

Step 2: Since the reminder 369 ≠ 0, we apply division lemma to 238 and 369, to get

369 = 238 x 1 + 131

Step 3: We consider the new divisor 238 and the new remainder 131, and apply the division lemma to get

238 = 131 x 1 + 107

We consider the new divisor 131 and the new remainder 107,and apply the division lemma to get

131 = 107 x 1 + 24

We consider the new divisor 107 and the new remainder 24,and apply the division lemma to get

107 = 24 x 4 + 11

We consider the new divisor 24 and the new remainder 11,and apply the division lemma to get

24 = 11 x 2 + 2

We consider the new divisor 11 and the new remainder 2,and apply the division lemma to get

11 = 2 x 5 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 976 and 369 is 1

Notice that 1 = HCF(2,1) = HCF(11,2) = HCF(24,11) = HCF(107,24) = HCF(131,107) = HCF(238,131) = HCF(369,238) = HCF(976,369) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 976, 369 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 976, 369?

Answer: HCF of 976, 369 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 976, 369 using Euclid's Algorithm?

Answer: For arbitrary numbers 976, 369 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.