Highest Common Factor of 976, 736, 420, 693 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 976, 736, 420, 693 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 976, 736, 420, 693 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 976, 736, 420, 693 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 976, 736, 420, 693 is 1.

HCF(976, 736, 420, 693) = 1

HCF of 976, 736, 420, 693 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 976, 736, 420, 693 is 1.

Highest Common Factor of 976,736,420,693 using Euclid's algorithm

Highest Common Factor of 976,736,420,693 is 1

Step 1: Since 976 > 736, we apply the division lemma to 976 and 736, to get

976 = 736 x 1 + 240

Step 2: Since the reminder 736 ≠ 0, we apply division lemma to 240 and 736, to get

736 = 240 x 3 + 16

Step 3: We consider the new divisor 240 and the new remainder 16, and apply the division lemma to get

240 = 16 x 15 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 16, the HCF of 976 and 736 is 16

Notice that 16 = HCF(240,16) = HCF(736,240) = HCF(976,736) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 420 > 16, we apply the division lemma to 420 and 16, to get

420 = 16 x 26 + 4

Step 2: Since the reminder 16 ≠ 0, we apply division lemma to 4 and 16, to get

16 = 4 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 16 and 420 is 4

Notice that 4 = HCF(16,4) = HCF(420,16) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 693 > 4, we apply the division lemma to 693 and 4, to get

693 = 4 x 173 + 1

Step 2: Since the reminder 4 ≠ 0, we apply division lemma to 1 and 4, to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4 and 693 is 1

Notice that 1 = HCF(4,1) = HCF(693,4) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 976, 736, 420, 693 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 976, 736, 420, 693?

Answer: HCF of 976, 736, 420, 693 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 976, 736, 420, 693 using Euclid's Algorithm?

Answer: For arbitrary numbers 976, 736, 420, 693 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.