Highest Common Factor of 9767, 8127 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9767, 8127 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 9767, 8127 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 9767, 8127 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 9767, 8127 is 1.

HCF(9767, 8127) = 1

HCF of 9767, 8127 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 9767, 8127 is 1.

Highest Common Factor of 9767,8127 using Euclid's algorithm

Highest Common Factor of 9767,8127 is 1

Step 1: Since 9767 > 8127, we apply the division lemma to 9767 and 8127, to get

9767 = 8127 x 1 + 1640

Step 2: Since the reminder 8127 ≠ 0, we apply division lemma to 1640 and 8127, to get

8127 = 1640 x 4 + 1567

Step 3: We consider the new divisor 1640 and the new remainder 1567, and apply the division lemma to get

1640 = 1567 x 1 + 73

We consider the new divisor 1567 and the new remainder 73,and apply the division lemma to get

1567 = 73 x 21 + 34

We consider the new divisor 73 and the new remainder 34,and apply the division lemma to get

73 = 34 x 2 + 5

We consider the new divisor 34 and the new remainder 5,and apply the division lemma to get

34 = 5 x 6 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9767 and 8127 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(34,5) = HCF(73,34) = HCF(1567,73) = HCF(1640,1567) = HCF(8127,1640) = HCF(9767,8127) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 9767, 8127 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 9767, 8127?

Answer: HCF of 9767, 8127 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 9767, 8127 using Euclid's Algorithm?

Answer: For arbitrary numbers 9767, 8127 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.