Highest Common Factor of 977, 828, 539 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 977, 828, 539 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 977, 828, 539 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 977, 828, 539 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 977, 828, 539 is 1.

HCF(977, 828, 539) = 1

HCF of 977, 828, 539 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 977, 828, 539 is 1.

Highest Common Factor of 977,828,539 using Euclid's algorithm

Highest Common Factor of 977,828,539 is 1

Step 1: Since 977 > 828, we apply the division lemma to 977 and 828, to get

977 = 828 x 1 + 149

Step 2: Since the reminder 828 ≠ 0, we apply division lemma to 149 and 828, to get

828 = 149 x 5 + 83

Step 3: We consider the new divisor 149 and the new remainder 83, and apply the division lemma to get

149 = 83 x 1 + 66

We consider the new divisor 83 and the new remainder 66,and apply the division lemma to get

83 = 66 x 1 + 17

We consider the new divisor 66 and the new remainder 17,and apply the division lemma to get

66 = 17 x 3 + 15

We consider the new divisor 17 and the new remainder 15,and apply the division lemma to get

17 = 15 x 1 + 2

We consider the new divisor 15 and the new remainder 2,and apply the division lemma to get

15 = 2 x 7 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 977 and 828 is 1

Notice that 1 = HCF(2,1) = HCF(15,2) = HCF(17,15) = HCF(66,17) = HCF(83,66) = HCF(149,83) = HCF(828,149) = HCF(977,828) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 539 > 1, we apply the division lemma to 539 and 1, to get

539 = 1 x 539 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 539 is 1

Notice that 1 = HCF(539,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 977, 828, 539 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 977, 828, 539?

Answer: HCF of 977, 828, 539 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 977, 828, 539 using Euclid's Algorithm?

Answer: For arbitrary numbers 977, 828, 539 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.