Highest Common Factor of 978, 423, 934 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 978, 423, 934 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 978, 423, 934 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 978, 423, 934 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 978, 423, 934 is 1.

HCF(978, 423, 934) = 1

HCF of 978, 423, 934 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 978, 423, 934 is 1.

Highest Common Factor of 978,423,934 using Euclid's algorithm

Highest Common Factor of 978,423,934 is 1

Step 1: Since 978 > 423, we apply the division lemma to 978 and 423, to get

978 = 423 x 2 + 132

Step 2: Since the reminder 423 ≠ 0, we apply division lemma to 132 and 423, to get

423 = 132 x 3 + 27

Step 3: We consider the new divisor 132 and the new remainder 27, and apply the division lemma to get

132 = 27 x 4 + 24

We consider the new divisor 27 and the new remainder 24,and apply the division lemma to get

27 = 24 x 1 + 3

We consider the new divisor 24 and the new remainder 3,and apply the division lemma to get

24 = 3 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 978 and 423 is 3

Notice that 3 = HCF(24,3) = HCF(27,24) = HCF(132,27) = HCF(423,132) = HCF(978,423) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 934 > 3, we apply the division lemma to 934 and 3, to get

934 = 3 x 311 + 1

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 1 and 3, to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 934 is 1

Notice that 1 = HCF(3,1) = HCF(934,3) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 978, 423, 934 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 978, 423, 934?

Answer: HCF of 978, 423, 934 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 978, 423, 934 using Euclid's Algorithm?

Answer: For arbitrary numbers 978, 423, 934 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.