Highest Common Factor of 979, 6670 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 979, 6670 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 979, 6670 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 979, 6670 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 979, 6670 is 1.

HCF(979, 6670) = 1

HCF of 979, 6670 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 979, 6670 is 1.

Highest Common Factor of 979,6670 using Euclid's algorithm

Highest Common Factor of 979,6670 is 1

Step 1: Since 6670 > 979, we apply the division lemma to 6670 and 979, to get

6670 = 979 x 6 + 796

Step 2: Since the reminder 979 ≠ 0, we apply division lemma to 796 and 979, to get

979 = 796 x 1 + 183

Step 3: We consider the new divisor 796 and the new remainder 183, and apply the division lemma to get

796 = 183 x 4 + 64

We consider the new divisor 183 and the new remainder 64,and apply the division lemma to get

183 = 64 x 2 + 55

We consider the new divisor 64 and the new remainder 55,and apply the division lemma to get

64 = 55 x 1 + 9

We consider the new divisor 55 and the new remainder 9,and apply the division lemma to get

55 = 9 x 6 + 1

We consider the new divisor 9 and the new remainder 1,and apply the division lemma to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 979 and 6670 is 1

Notice that 1 = HCF(9,1) = HCF(55,9) = HCF(64,55) = HCF(183,64) = HCF(796,183) = HCF(979,796) = HCF(6670,979) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 979, 6670 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 979, 6670?

Answer: HCF of 979, 6670 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 979, 6670 using Euclid's Algorithm?

Answer: For arbitrary numbers 979, 6670 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.