Highest Common Factor of 98, 479, 932, 199 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 98, 479, 932, 199 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 98, 479, 932, 199 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 98, 479, 932, 199 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 98, 479, 932, 199 is 1.

HCF(98, 479, 932, 199) = 1

HCF of 98, 479, 932, 199 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 98, 479, 932, 199 is 1.

Highest Common Factor of 98,479,932,199 using Euclid's algorithm

Highest Common Factor of 98,479,932,199 is 1

Step 1: Since 479 > 98, we apply the division lemma to 479 and 98, to get

479 = 98 x 4 + 87

Step 2: Since the reminder 98 ≠ 0, we apply division lemma to 87 and 98, to get

98 = 87 x 1 + 11

Step 3: We consider the new divisor 87 and the new remainder 11, and apply the division lemma to get

87 = 11 x 7 + 10

We consider the new divisor 11 and the new remainder 10,and apply the division lemma to get

11 = 10 x 1 + 1

We consider the new divisor 10 and the new remainder 1,and apply the division lemma to get

10 = 1 x 10 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 98 and 479 is 1

Notice that 1 = HCF(10,1) = HCF(11,10) = HCF(87,11) = HCF(98,87) = HCF(479,98) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 932 > 1, we apply the division lemma to 932 and 1, to get

932 = 1 x 932 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 932 is 1

Notice that 1 = HCF(932,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 199 > 1, we apply the division lemma to 199 and 1, to get

199 = 1 x 199 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 199 is 1

Notice that 1 = HCF(199,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 98, 479, 932, 199 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 98, 479, 932, 199?

Answer: HCF of 98, 479, 932, 199 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 98, 479, 932, 199 using Euclid's Algorithm?

Answer: For arbitrary numbers 98, 479, 932, 199 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.