Highest Common Factor of 98, 77, 78, 784 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 98, 77, 78, 784 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 98, 77, 78, 784 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 98, 77, 78, 784 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 98, 77, 78, 784 is 1.

HCF(98, 77, 78, 784) = 1

HCF of 98, 77, 78, 784 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 98, 77, 78, 784 is 1.

Highest Common Factor of 98,77,78,784 using Euclid's algorithm

Highest Common Factor of 98,77,78,784 is 1

Step 1: Since 98 > 77, we apply the division lemma to 98 and 77, to get

98 = 77 x 1 + 21

Step 2: Since the reminder 77 ≠ 0, we apply division lemma to 21 and 77, to get

77 = 21 x 3 + 14

Step 3: We consider the new divisor 21 and the new remainder 14, and apply the division lemma to get

21 = 14 x 1 + 7

We consider the new divisor 14 and the new remainder 7, and apply the division lemma to get

14 = 7 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 7, the HCF of 98 and 77 is 7

Notice that 7 = HCF(14,7) = HCF(21,14) = HCF(77,21) = HCF(98,77) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 78 > 7, we apply the division lemma to 78 and 7, to get

78 = 7 x 11 + 1

Step 2: Since the reminder 7 ≠ 0, we apply division lemma to 1 and 7, to get

7 = 1 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7 and 78 is 1

Notice that 1 = HCF(7,1) = HCF(78,7) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 784 > 1, we apply the division lemma to 784 and 1, to get

784 = 1 x 784 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 784 is 1

Notice that 1 = HCF(784,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 98, 77, 78, 784 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 98, 77, 78, 784?

Answer: HCF of 98, 77, 78, 784 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 98, 77, 78, 784 using Euclid's Algorithm?

Answer: For arbitrary numbers 98, 77, 78, 784 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.