Highest Common Factor of 98, 903, 898, 354 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 98, 903, 898, 354 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 98, 903, 898, 354 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 98, 903, 898, 354 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 98, 903, 898, 354 is 1.

HCF(98, 903, 898, 354) = 1

HCF of 98, 903, 898, 354 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 98, 903, 898, 354 is 1.

Highest Common Factor of 98,903,898,354 using Euclid's algorithm

Highest Common Factor of 98,903,898,354 is 1

Step 1: Since 903 > 98, we apply the division lemma to 903 and 98, to get

903 = 98 x 9 + 21

Step 2: Since the reminder 98 ≠ 0, we apply division lemma to 21 and 98, to get

98 = 21 x 4 + 14

Step 3: We consider the new divisor 21 and the new remainder 14, and apply the division lemma to get

21 = 14 x 1 + 7

We consider the new divisor 14 and the new remainder 7, and apply the division lemma to get

14 = 7 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 7, the HCF of 98 and 903 is 7

Notice that 7 = HCF(14,7) = HCF(21,14) = HCF(98,21) = HCF(903,98) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 898 > 7, we apply the division lemma to 898 and 7, to get

898 = 7 x 128 + 2

Step 2: Since the reminder 7 ≠ 0, we apply division lemma to 2 and 7, to get

7 = 2 x 3 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7 and 898 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(898,7) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 354 > 1, we apply the division lemma to 354 and 1, to get

354 = 1 x 354 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 354 is 1

Notice that 1 = HCF(354,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 98, 903, 898, 354 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 98, 903, 898, 354?

Answer: HCF of 98, 903, 898, 354 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 98, 903, 898, 354 using Euclid's Algorithm?

Answer: For arbitrary numbers 98, 903, 898, 354 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.