Highest Common Factor of 980, 1533 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 980, 1533 i.e. 7 the largest integer that leaves a remainder zero for all numbers.

HCF of 980, 1533 is 7 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 980, 1533 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 980, 1533 is 7.

HCF(980, 1533) = 7

HCF of 980, 1533 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 980, 1533 is 7.

Highest Common Factor of 980,1533 using Euclid's algorithm

Highest Common Factor of 980,1533 is 7

Step 1: Since 1533 > 980, we apply the division lemma to 1533 and 980, to get

1533 = 980 x 1 + 553

Step 2: Since the reminder 980 ≠ 0, we apply division lemma to 553 and 980, to get

980 = 553 x 1 + 427

Step 3: We consider the new divisor 553 and the new remainder 427, and apply the division lemma to get

553 = 427 x 1 + 126

We consider the new divisor 427 and the new remainder 126,and apply the division lemma to get

427 = 126 x 3 + 49

We consider the new divisor 126 and the new remainder 49,and apply the division lemma to get

126 = 49 x 2 + 28

We consider the new divisor 49 and the new remainder 28,and apply the division lemma to get

49 = 28 x 1 + 21

We consider the new divisor 28 and the new remainder 21,and apply the division lemma to get

28 = 21 x 1 + 7

We consider the new divisor 21 and the new remainder 7,and apply the division lemma to get

21 = 7 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 7, the HCF of 980 and 1533 is 7

Notice that 7 = HCF(21,7) = HCF(28,21) = HCF(49,28) = HCF(126,49) = HCF(427,126) = HCF(553,427) = HCF(980,553) = HCF(1533,980) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 980, 1533 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 980, 1533?

Answer: HCF of 980, 1533 is 7 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 980, 1533 using Euclid's Algorithm?

Answer: For arbitrary numbers 980, 1533 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.