Highest Common Factor of 980, 637, 691 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 980, 637, 691 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 980, 637, 691 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 980, 637, 691 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 980, 637, 691 is 1.

HCF(980, 637, 691) = 1

HCF of 980, 637, 691 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 980, 637, 691 is 1.

Highest Common Factor of 980,637,691 using Euclid's algorithm

Highest Common Factor of 980,637,691 is 1

Step 1: Since 980 > 637, we apply the division lemma to 980 and 637, to get

980 = 637 x 1 + 343

Step 2: Since the reminder 637 ≠ 0, we apply division lemma to 343 and 637, to get

637 = 343 x 1 + 294

Step 3: We consider the new divisor 343 and the new remainder 294, and apply the division lemma to get

343 = 294 x 1 + 49

We consider the new divisor 294 and the new remainder 49, and apply the division lemma to get

294 = 49 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 49, the HCF of 980 and 637 is 49

Notice that 49 = HCF(294,49) = HCF(343,294) = HCF(637,343) = HCF(980,637) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 691 > 49, we apply the division lemma to 691 and 49, to get

691 = 49 x 14 + 5

Step 2: Since the reminder 49 ≠ 0, we apply division lemma to 5 and 49, to get

49 = 5 x 9 + 4

Step 3: We consider the new divisor 5 and the new remainder 4, and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1, and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 49 and 691 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(49,5) = HCF(691,49) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 980, 637, 691 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 980, 637, 691?

Answer: HCF of 980, 637, 691 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 980, 637, 691 using Euclid's Algorithm?

Answer: For arbitrary numbers 980, 637, 691 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.