Highest Common Factor of 980, 997, 224, 88 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 980, 997, 224, 88 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 980, 997, 224, 88 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 980, 997, 224, 88 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 980, 997, 224, 88 is 1.

HCF(980, 997, 224, 88) = 1

HCF of 980, 997, 224, 88 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 980, 997, 224, 88 is 1.

Highest Common Factor of 980,997,224,88 using Euclid's algorithm

Highest Common Factor of 980,997,224,88 is 1

Step 1: Since 997 > 980, we apply the division lemma to 997 and 980, to get

997 = 980 x 1 + 17

Step 2: Since the reminder 980 ≠ 0, we apply division lemma to 17 and 980, to get

980 = 17 x 57 + 11

Step 3: We consider the new divisor 17 and the new remainder 11, and apply the division lemma to get

17 = 11 x 1 + 6

We consider the new divisor 11 and the new remainder 6,and apply the division lemma to get

11 = 6 x 1 + 5

We consider the new divisor 6 and the new remainder 5,and apply the division lemma to get

6 = 5 x 1 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 980 and 997 is 1

Notice that 1 = HCF(5,1) = HCF(6,5) = HCF(11,6) = HCF(17,11) = HCF(980,17) = HCF(997,980) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 224 > 1, we apply the division lemma to 224 and 1, to get

224 = 1 x 224 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 224 is 1

Notice that 1 = HCF(224,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 88 > 1, we apply the division lemma to 88 and 1, to get

88 = 1 x 88 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 88 is 1

Notice that 1 = HCF(88,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 980, 997, 224, 88 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 980, 997, 224, 88?

Answer: HCF of 980, 997, 224, 88 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 980, 997, 224, 88 using Euclid's Algorithm?

Answer: For arbitrary numbers 980, 997, 224, 88 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.