Highest Common Factor of 9803, 8635 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9803, 8635 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 9803, 8635 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 9803, 8635 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 9803, 8635 is 1.

HCF(9803, 8635) = 1

HCF of 9803, 8635 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 9803, 8635 is 1.

Highest Common Factor of 9803,8635 using Euclid's algorithm

Highest Common Factor of 9803,8635 is 1

Step 1: Since 9803 > 8635, we apply the division lemma to 9803 and 8635, to get

9803 = 8635 x 1 + 1168

Step 2: Since the reminder 8635 ≠ 0, we apply division lemma to 1168 and 8635, to get

8635 = 1168 x 7 + 459

Step 3: We consider the new divisor 1168 and the new remainder 459, and apply the division lemma to get

1168 = 459 x 2 + 250

We consider the new divisor 459 and the new remainder 250,and apply the division lemma to get

459 = 250 x 1 + 209

We consider the new divisor 250 and the new remainder 209,and apply the division lemma to get

250 = 209 x 1 + 41

We consider the new divisor 209 and the new remainder 41,and apply the division lemma to get

209 = 41 x 5 + 4

We consider the new divisor 41 and the new remainder 4,and apply the division lemma to get

41 = 4 x 10 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9803 and 8635 is 1

Notice that 1 = HCF(4,1) = HCF(41,4) = HCF(209,41) = HCF(250,209) = HCF(459,250) = HCF(1168,459) = HCF(8635,1168) = HCF(9803,8635) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 9803, 8635 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 9803, 8635?

Answer: HCF of 9803, 8635 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 9803, 8635 using Euclid's Algorithm?

Answer: For arbitrary numbers 9803, 8635 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.