Highest Common Factor of 981, 298, 918, 392 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 981, 298, 918, 392 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 981, 298, 918, 392 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 981, 298, 918, 392 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 981, 298, 918, 392 is 1.

HCF(981, 298, 918, 392) = 1

HCF of 981, 298, 918, 392 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 981, 298, 918, 392 is 1.

Highest Common Factor of 981,298,918,392 using Euclid's algorithm

Highest Common Factor of 981,298,918,392 is 1

Step 1: Since 981 > 298, we apply the division lemma to 981 and 298, to get

981 = 298 x 3 + 87

Step 2: Since the reminder 298 ≠ 0, we apply division lemma to 87 and 298, to get

298 = 87 x 3 + 37

Step 3: We consider the new divisor 87 and the new remainder 37, and apply the division lemma to get

87 = 37 x 2 + 13

We consider the new divisor 37 and the new remainder 13,and apply the division lemma to get

37 = 13 x 2 + 11

We consider the new divisor 13 and the new remainder 11,and apply the division lemma to get

13 = 11 x 1 + 2

We consider the new divisor 11 and the new remainder 2,and apply the division lemma to get

11 = 2 x 5 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 981 and 298 is 1

Notice that 1 = HCF(2,1) = HCF(11,2) = HCF(13,11) = HCF(37,13) = HCF(87,37) = HCF(298,87) = HCF(981,298) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 918 > 1, we apply the division lemma to 918 and 1, to get

918 = 1 x 918 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 918 is 1

Notice that 1 = HCF(918,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 392 > 1, we apply the division lemma to 392 and 1, to get

392 = 1 x 392 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 392 is 1

Notice that 1 = HCF(392,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 981, 298, 918, 392 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 981, 298, 918, 392?

Answer: HCF of 981, 298, 918, 392 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 981, 298, 918, 392 using Euclid's Algorithm?

Answer: For arbitrary numbers 981, 298, 918, 392 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.