Highest Common Factor of 982, 731, 130 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 982, 731, 130 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 982, 731, 130 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 982, 731, 130 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 982, 731, 130 is 1.

HCF(982, 731, 130) = 1

HCF of 982, 731, 130 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 982, 731, 130 is 1.

Highest Common Factor of 982,731,130 using Euclid's algorithm

Highest Common Factor of 982,731,130 is 1

Step 1: Since 982 > 731, we apply the division lemma to 982 and 731, to get

982 = 731 x 1 + 251

Step 2: Since the reminder 731 ≠ 0, we apply division lemma to 251 and 731, to get

731 = 251 x 2 + 229

Step 3: We consider the new divisor 251 and the new remainder 229, and apply the division lemma to get

251 = 229 x 1 + 22

We consider the new divisor 229 and the new remainder 22,and apply the division lemma to get

229 = 22 x 10 + 9

We consider the new divisor 22 and the new remainder 9,and apply the division lemma to get

22 = 9 x 2 + 4

We consider the new divisor 9 and the new remainder 4,and apply the division lemma to get

9 = 4 x 2 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 982 and 731 is 1

Notice that 1 = HCF(4,1) = HCF(9,4) = HCF(22,9) = HCF(229,22) = HCF(251,229) = HCF(731,251) = HCF(982,731) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 130 > 1, we apply the division lemma to 130 and 1, to get

130 = 1 x 130 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 130 is 1

Notice that 1 = HCF(130,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 982, 731, 130 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 982, 731, 130?

Answer: HCF of 982, 731, 130 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 982, 731, 130 using Euclid's Algorithm?

Answer: For arbitrary numbers 982, 731, 130 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.