Highest Common Factor of 983, 883, 499, 87 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 983, 883, 499, 87 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 983, 883, 499, 87 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 983, 883, 499, 87 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 983, 883, 499, 87 is 1.

HCF(983, 883, 499, 87) = 1

HCF of 983, 883, 499, 87 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 983, 883, 499, 87 is 1.

Highest Common Factor of 983,883,499,87 using Euclid's algorithm

Highest Common Factor of 983,883,499,87 is 1

Step 1: Since 983 > 883, we apply the division lemma to 983 and 883, to get

983 = 883 x 1 + 100

Step 2: Since the reminder 883 ≠ 0, we apply division lemma to 100 and 883, to get

883 = 100 x 8 + 83

Step 3: We consider the new divisor 100 and the new remainder 83, and apply the division lemma to get

100 = 83 x 1 + 17

We consider the new divisor 83 and the new remainder 17,and apply the division lemma to get

83 = 17 x 4 + 15

We consider the new divisor 17 and the new remainder 15,and apply the division lemma to get

17 = 15 x 1 + 2

We consider the new divisor 15 and the new remainder 2,and apply the division lemma to get

15 = 2 x 7 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 983 and 883 is 1

Notice that 1 = HCF(2,1) = HCF(15,2) = HCF(17,15) = HCF(83,17) = HCF(100,83) = HCF(883,100) = HCF(983,883) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 499 > 1, we apply the division lemma to 499 and 1, to get

499 = 1 x 499 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 499 is 1

Notice that 1 = HCF(499,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 87 > 1, we apply the division lemma to 87 and 1, to get

87 = 1 x 87 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 87 is 1

Notice that 1 = HCF(87,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 983, 883, 499, 87 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 983, 883, 499, 87?

Answer: HCF of 983, 883, 499, 87 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 983, 883, 499, 87 using Euclid's Algorithm?

Answer: For arbitrary numbers 983, 883, 499, 87 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.