Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 985, 509, 463, 599 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 985, 509, 463, 599 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 985, 509, 463, 599 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 985, 509, 463, 599 is 1.
HCF(985, 509, 463, 599) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 985, 509, 463, 599 is 1.
Step 1: Since 985 > 509, we apply the division lemma to 985 and 509, to get
985 = 509 x 1 + 476
Step 2: Since the reminder 509 ≠ 0, we apply division lemma to 476 and 509, to get
509 = 476 x 1 + 33
Step 3: We consider the new divisor 476 and the new remainder 33, and apply the division lemma to get
476 = 33 x 14 + 14
We consider the new divisor 33 and the new remainder 14,and apply the division lemma to get
33 = 14 x 2 + 5
We consider the new divisor 14 and the new remainder 5,and apply the division lemma to get
14 = 5 x 2 + 4
We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get
5 = 4 x 1 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 985 and 509 is 1
Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(14,5) = HCF(33,14) = HCF(476,33) = HCF(509,476) = HCF(985,509) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 463 > 1, we apply the division lemma to 463 and 1, to get
463 = 1 x 463 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 463 is 1
Notice that 1 = HCF(463,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 599 > 1, we apply the division lemma to 599 and 1, to get
599 = 1 x 599 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 599 is 1
Notice that 1 = HCF(599,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 985, 509, 463, 599?
Answer: HCF of 985, 509, 463, 599 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 985, 509, 463, 599 using Euclid's Algorithm?
Answer: For arbitrary numbers 985, 509, 463, 599 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.