Highest Common Factor of 985, 551, 447 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 985, 551, 447 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 985, 551, 447 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 985, 551, 447 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 985, 551, 447 is 1.

HCF(985, 551, 447) = 1

HCF of 985, 551, 447 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 985, 551, 447 is 1.

Highest Common Factor of 985,551,447 using Euclid's algorithm

Highest Common Factor of 985,551,447 is 1

Step 1: Since 985 > 551, we apply the division lemma to 985 and 551, to get

985 = 551 x 1 + 434

Step 2: Since the reminder 551 ≠ 0, we apply division lemma to 434 and 551, to get

551 = 434 x 1 + 117

Step 3: We consider the new divisor 434 and the new remainder 117, and apply the division lemma to get

434 = 117 x 3 + 83

We consider the new divisor 117 and the new remainder 83,and apply the division lemma to get

117 = 83 x 1 + 34

We consider the new divisor 83 and the new remainder 34,and apply the division lemma to get

83 = 34 x 2 + 15

We consider the new divisor 34 and the new remainder 15,and apply the division lemma to get

34 = 15 x 2 + 4

We consider the new divisor 15 and the new remainder 4,and apply the division lemma to get

15 = 4 x 3 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 985 and 551 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(15,4) = HCF(34,15) = HCF(83,34) = HCF(117,83) = HCF(434,117) = HCF(551,434) = HCF(985,551) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 447 > 1, we apply the division lemma to 447 and 1, to get

447 = 1 x 447 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 447 is 1

Notice that 1 = HCF(447,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 985, 551, 447 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 985, 551, 447?

Answer: HCF of 985, 551, 447 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 985, 551, 447 using Euclid's Algorithm?

Answer: For arbitrary numbers 985, 551, 447 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.