Highest Common Factor of 986, 3741 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 986, 3741 i.e. 29 the largest integer that leaves a remainder zero for all numbers.

HCF of 986, 3741 is 29 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 986, 3741 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 986, 3741 is 29.

HCF(986, 3741) = 29

HCF of 986, 3741 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 986, 3741 is 29.

Highest Common Factor of 986,3741 using Euclid's algorithm

Highest Common Factor of 986,3741 is 29

Step 1: Since 3741 > 986, we apply the division lemma to 3741 and 986, to get

3741 = 986 x 3 + 783

Step 2: Since the reminder 986 ≠ 0, we apply division lemma to 783 and 986, to get

986 = 783 x 1 + 203

Step 3: We consider the new divisor 783 and the new remainder 203, and apply the division lemma to get

783 = 203 x 3 + 174

We consider the new divisor 203 and the new remainder 174,and apply the division lemma to get

203 = 174 x 1 + 29

We consider the new divisor 174 and the new remainder 29,and apply the division lemma to get

174 = 29 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 29, the HCF of 986 and 3741 is 29

Notice that 29 = HCF(174,29) = HCF(203,174) = HCF(783,203) = HCF(986,783) = HCF(3741,986) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 986, 3741 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 986, 3741?

Answer: HCF of 986, 3741 is 29 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 986, 3741 using Euclid's Algorithm?

Answer: For arbitrary numbers 986, 3741 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.