Highest Common Factor of 987, 385, 718 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 987, 385, 718 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 987, 385, 718 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 987, 385, 718 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 987, 385, 718 is 1.

HCF(987, 385, 718) = 1

HCF of 987, 385, 718 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 987, 385, 718 is 1.

Highest Common Factor of 987,385,718 using Euclid's algorithm

Highest Common Factor of 987,385,718 is 1

Step 1: Since 987 > 385, we apply the division lemma to 987 and 385, to get

987 = 385 x 2 + 217

Step 2: Since the reminder 385 ≠ 0, we apply division lemma to 217 and 385, to get

385 = 217 x 1 + 168

Step 3: We consider the new divisor 217 and the new remainder 168, and apply the division lemma to get

217 = 168 x 1 + 49

We consider the new divisor 168 and the new remainder 49,and apply the division lemma to get

168 = 49 x 3 + 21

We consider the new divisor 49 and the new remainder 21,and apply the division lemma to get

49 = 21 x 2 + 7

We consider the new divisor 21 and the new remainder 7,and apply the division lemma to get

21 = 7 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 7, the HCF of 987 and 385 is 7

Notice that 7 = HCF(21,7) = HCF(49,21) = HCF(168,49) = HCF(217,168) = HCF(385,217) = HCF(987,385) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 718 > 7, we apply the division lemma to 718 and 7, to get

718 = 7 x 102 + 4

Step 2: Since the reminder 7 ≠ 0, we apply division lemma to 4 and 7, to get

7 = 4 x 1 + 3

Step 3: We consider the new divisor 4 and the new remainder 3, and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1, and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 7 and 718 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(7,4) = HCF(718,7) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 987, 385, 718 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 987, 385, 718?

Answer: HCF of 987, 385, 718 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 987, 385, 718 using Euclid's Algorithm?

Answer: For arbitrary numbers 987, 385, 718 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.