Highest Common Factor of 987, 540, 827, 37 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 987, 540, 827, 37 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 987, 540, 827, 37 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 987, 540, 827, 37 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 987, 540, 827, 37 is 1.

HCF(987, 540, 827, 37) = 1

HCF of 987, 540, 827, 37 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 987, 540, 827, 37 is 1.

Highest Common Factor of 987,540,827,37 using Euclid's algorithm

Highest Common Factor of 987,540,827,37 is 1

Step 1: Since 987 > 540, we apply the division lemma to 987 and 540, to get

987 = 540 x 1 + 447

Step 2: Since the reminder 540 ≠ 0, we apply division lemma to 447 and 540, to get

540 = 447 x 1 + 93

Step 3: We consider the new divisor 447 and the new remainder 93, and apply the division lemma to get

447 = 93 x 4 + 75

We consider the new divisor 93 and the new remainder 75,and apply the division lemma to get

93 = 75 x 1 + 18

We consider the new divisor 75 and the new remainder 18,and apply the division lemma to get

75 = 18 x 4 + 3

We consider the new divisor 18 and the new remainder 3,and apply the division lemma to get

18 = 3 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 987 and 540 is 3

Notice that 3 = HCF(18,3) = HCF(75,18) = HCF(93,75) = HCF(447,93) = HCF(540,447) = HCF(987,540) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 827 > 3, we apply the division lemma to 827 and 3, to get

827 = 3 x 275 + 2

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 2 and 3, to get

3 = 2 x 1 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 827 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(827,3) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 37 > 1, we apply the division lemma to 37 and 1, to get

37 = 1 x 37 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 37 is 1

Notice that 1 = HCF(37,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 987, 540, 827, 37 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 987, 540, 827, 37?

Answer: HCF of 987, 540, 827, 37 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 987, 540, 827, 37 using Euclid's Algorithm?

Answer: For arbitrary numbers 987, 540, 827, 37 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.