Highest Common Factor of 988, 553, 220 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 988, 553, 220 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 988, 553, 220 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 988, 553, 220 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 988, 553, 220 is 1.

HCF(988, 553, 220) = 1

HCF of 988, 553, 220 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 988, 553, 220 is 1.

Highest Common Factor of 988,553,220 using Euclid's algorithm

Highest Common Factor of 988,553,220 is 1

Step 1: Since 988 > 553, we apply the division lemma to 988 and 553, to get

988 = 553 x 1 + 435

Step 2: Since the reminder 553 ≠ 0, we apply division lemma to 435 and 553, to get

553 = 435 x 1 + 118

Step 3: We consider the new divisor 435 and the new remainder 118, and apply the division lemma to get

435 = 118 x 3 + 81

We consider the new divisor 118 and the new remainder 81,and apply the division lemma to get

118 = 81 x 1 + 37

We consider the new divisor 81 and the new remainder 37,and apply the division lemma to get

81 = 37 x 2 + 7

We consider the new divisor 37 and the new remainder 7,and apply the division lemma to get

37 = 7 x 5 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 988 and 553 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(37,7) = HCF(81,37) = HCF(118,81) = HCF(435,118) = HCF(553,435) = HCF(988,553) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 220 > 1, we apply the division lemma to 220 and 1, to get

220 = 1 x 220 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 220 is 1

Notice that 1 = HCF(220,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 988, 553, 220 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 988, 553, 220?

Answer: HCF of 988, 553, 220 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 988, 553, 220 using Euclid's Algorithm?

Answer: For arbitrary numbers 988, 553, 220 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.