Highest Common Factor of 989, 369, 359 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 989, 369, 359 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 989, 369, 359 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 989, 369, 359 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 989, 369, 359 is 1.

HCF(989, 369, 359) = 1

HCF of 989, 369, 359 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 989, 369, 359 is 1.

Highest Common Factor of 989,369,359 using Euclid's algorithm

Highest Common Factor of 989,369,359 is 1

Step 1: Since 989 > 369, we apply the division lemma to 989 and 369, to get

989 = 369 x 2 + 251

Step 2: Since the reminder 369 ≠ 0, we apply division lemma to 251 and 369, to get

369 = 251 x 1 + 118

Step 3: We consider the new divisor 251 and the new remainder 118, and apply the division lemma to get

251 = 118 x 2 + 15

We consider the new divisor 118 and the new remainder 15,and apply the division lemma to get

118 = 15 x 7 + 13

We consider the new divisor 15 and the new remainder 13,and apply the division lemma to get

15 = 13 x 1 + 2

We consider the new divisor 13 and the new remainder 2,and apply the division lemma to get

13 = 2 x 6 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 989 and 369 is 1

Notice that 1 = HCF(2,1) = HCF(13,2) = HCF(15,13) = HCF(118,15) = HCF(251,118) = HCF(369,251) = HCF(989,369) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 359 > 1, we apply the division lemma to 359 and 1, to get

359 = 1 x 359 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 359 is 1

Notice that 1 = HCF(359,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 989, 369, 359 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 989, 369, 359?

Answer: HCF of 989, 369, 359 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 989, 369, 359 using Euclid's Algorithm?

Answer: For arbitrary numbers 989, 369, 359 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.