Highest Common Factor of 990, 902, 463 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 990, 902, 463 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 990, 902, 463 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 990, 902, 463 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 990, 902, 463 is 1.

HCF(990, 902, 463) = 1

HCF of 990, 902, 463 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 990, 902, 463 is 1.

Highest Common Factor of 990,902,463 using Euclid's algorithm

Highest Common Factor of 990,902,463 is 1

Step 1: Since 990 > 902, we apply the division lemma to 990 and 902, to get

990 = 902 x 1 + 88

Step 2: Since the reminder 902 ≠ 0, we apply division lemma to 88 and 902, to get

902 = 88 x 10 + 22

Step 3: We consider the new divisor 88 and the new remainder 22, and apply the division lemma to get

88 = 22 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 22, the HCF of 990 and 902 is 22

Notice that 22 = HCF(88,22) = HCF(902,88) = HCF(990,902) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 463 > 22, we apply the division lemma to 463 and 22, to get

463 = 22 x 21 + 1

Step 2: Since the reminder 22 ≠ 0, we apply division lemma to 1 and 22, to get

22 = 1 x 22 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 22 and 463 is 1

Notice that 1 = HCF(22,1) = HCF(463,22) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 990, 902, 463 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 990, 902, 463?

Answer: HCF of 990, 902, 463 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 990, 902, 463 using Euclid's Algorithm?

Answer: For arbitrary numbers 990, 902, 463 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.