Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9914, 6715 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 9914, 6715 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 9914, 6715 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 9914, 6715 is 1.
HCF(9914, 6715) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 9914, 6715 is 1.
Step 1: Since 9914 > 6715, we apply the division lemma to 9914 and 6715, to get
9914 = 6715 x 1 + 3199
Step 2: Since the reminder 6715 ≠ 0, we apply division lemma to 3199 and 6715, to get
6715 = 3199 x 2 + 317
Step 3: We consider the new divisor 3199 and the new remainder 317, and apply the division lemma to get
3199 = 317 x 10 + 29
We consider the new divisor 317 and the new remainder 29,and apply the division lemma to get
317 = 29 x 10 + 27
We consider the new divisor 29 and the new remainder 27,and apply the division lemma to get
29 = 27 x 1 + 2
We consider the new divisor 27 and the new remainder 2,and apply the division lemma to get
27 = 2 x 13 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9914 and 6715 is 1
Notice that 1 = HCF(2,1) = HCF(27,2) = HCF(29,27) = HCF(317,29) = HCF(3199,317) = HCF(6715,3199) = HCF(9914,6715) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 9914, 6715?
Answer: HCF of 9914, 6715 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 9914, 6715 using Euclid's Algorithm?
Answer: For arbitrary numbers 9914, 6715 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.