Highest Common Factor of 992, 749, 482, 550 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 992, 749, 482, 550 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 992, 749, 482, 550 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 992, 749, 482, 550 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 992, 749, 482, 550 is 1.

HCF(992, 749, 482, 550) = 1

HCF of 992, 749, 482, 550 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 992, 749, 482, 550 is 1.

Highest Common Factor of 992,749,482,550 using Euclid's algorithm

Highest Common Factor of 992,749,482,550 is 1

Step 1: Since 992 > 749, we apply the division lemma to 992 and 749, to get

992 = 749 x 1 + 243

Step 2: Since the reminder 749 ≠ 0, we apply division lemma to 243 and 749, to get

749 = 243 x 3 + 20

Step 3: We consider the new divisor 243 and the new remainder 20, and apply the division lemma to get

243 = 20 x 12 + 3

We consider the new divisor 20 and the new remainder 3,and apply the division lemma to get

20 = 3 x 6 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 992 and 749 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(20,3) = HCF(243,20) = HCF(749,243) = HCF(992,749) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 482 > 1, we apply the division lemma to 482 and 1, to get

482 = 1 x 482 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 482 is 1

Notice that 1 = HCF(482,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 550 > 1, we apply the division lemma to 550 and 1, to get

550 = 1 x 550 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 550 is 1

Notice that 1 = HCF(550,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 992, 749, 482, 550 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 992, 749, 482, 550?

Answer: HCF of 992, 749, 482, 550 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 992, 749, 482, 550 using Euclid's Algorithm?

Answer: For arbitrary numbers 992, 749, 482, 550 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.