Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9934, 3007 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 9934, 3007 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 9934, 3007 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 9934, 3007 is 1.
HCF(9934, 3007) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 9934, 3007 is 1.
Step 1: Since 9934 > 3007, we apply the division lemma to 9934 and 3007, to get
9934 = 3007 x 3 + 913
Step 2: Since the reminder 3007 ≠ 0, we apply division lemma to 913 and 3007, to get
3007 = 913 x 3 + 268
Step 3: We consider the new divisor 913 and the new remainder 268, and apply the division lemma to get
913 = 268 x 3 + 109
We consider the new divisor 268 and the new remainder 109,and apply the division lemma to get
268 = 109 x 2 + 50
We consider the new divisor 109 and the new remainder 50,and apply the division lemma to get
109 = 50 x 2 + 9
We consider the new divisor 50 and the new remainder 9,and apply the division lemma to get
50 = 9 x 5 + 5
We consider the new divisor 9 and the new remainder 5,and apply the division lemma to get
9 = 5 x 1 + 4
We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get
5 = 4 x 1 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9934 and 3007 is 1
Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(9,5) = HCF(50,9) = HCF(109,50) = HCF(268,109) = HCF(913,268) = HCF(3007,913) = HCF(9934,3007) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 9934, 3007?
Answer: HCF of 9934, 3007 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 9934, 3007 using Euclid's Algorithm?
Answer: For arbitrary numbers 9934, 3007 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.