Highest Common Factor of 995, 551, 44, 785 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 995, 551, 44, 785 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 995, 551, 44, 785 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 995, 551, 44, 785 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 995, 551, 44, 785 is 1.

HCF(995, 551, 44, 785) = 1

HCF of 995, 551, 44, 785 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 995, 551, 44, 785 is 1.

Highest Common Factor of 995,551,44,785 using Euclid's algorithm

Highest Common Factor of 995,551,44,785 is 1

Step 1: Since 995 > 551, we apply the division lemma to 995 and 551, to get

995 = 551 x 1 + 444

Step 2: Since the reminder 551 ≠ 0, we apply division lemma to 444 and 551, to get

551 = 444 x 1 + 107

Step 3: We consider the new divisor 444 and the new remainder 107, and apply the division lemma to get

444 = 107 x 4 + 16

We consider the new divisor 107 and the new remainder 16,and apply the division lemma to get

107 = 16 x 6 + 11

We consider the new divisor 16 and the new remainder 11,and apply the division lemma to get

16 = 11 x 1 + 5

We consider the new divisor 11 and the new remainder 5,and apply the division lemma to get

11 = 5 x 2 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 995 and 551 is 1

Notice that 1 = HCF(5,1) = HCF(11,5) = HCF(16,11) = HCF(107,16) = HCF(444,107) = HCF(551,444) = HCF(995,551) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 44 > 1, we apply the division lemma to 44 and 1, to get

44 = 1 x 44 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 44 is 1

Notice that 1 = HCF(44,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 785 > 1, we apply the division lemma to 785 and 1, to get

785 = 1 x 785 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 785 is 1

Notice that 1 = HCF(785,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 995, 551, 44, 785 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 995, 551, 44, 785?

Answer: HCF of 995, 551, 44, 785 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 995, 551, 44, 785 using Euclid's Algorithm?

Answer: For arbitrary numbers 995, 551, 44, 785 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.