Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 998, 435, 615, 45 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 998, 435, 615, 45 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 998, 435, 615, 45 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 998, 435, 615, 45 is 1.
HCF(998, 435, 615, 45) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 998, 435, 615, 45 is 1.
Step 1: Since 998 > 435, we apply the division lemma to 998 and 435, to get
998 = 435 x 2 + 128
Step 2: Since the reminder 435 ≠ 0, we apply division lemma to 128 and 435, to get
435 = 128 x 3 + 51
Step 3: We consider the new divisor 128 and the new remainder 51, and apply the division lemma to get
128 = 51 x 2 + 26
We consider the new divisor 51 and the new remainder 26,and apply the division lemma to get
51 = 26 x 1 + 25
We consider the new divisor 26 and the new remainder 25,and apply the division lemma to get
26 = 25 x 1 + 1
We consider the new divisor 25 and the new remainder 1,and apply the division lemma to get
25 = 1 x 25 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 998 and 435 is 1
Notice that 1 = HCF(25,1) = HCF(26,25) = HCF(51,26) = HCF(128,51) = HCF(435,128) = HCF(998,435) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 615 > 1, we apply the division lemma to 615 and 1, to get
615 = 1 x 615 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 615 is 1
Notice that 1 = HCF(615,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 45 > 1, we apply the division lemma to 45 and 1, to get
45 = 1 x 45 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 45 is 1
Notice that 1 = HCF(45,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 998, 435, 615, 45?
Answer: HCF of 998, 435, 615, 45 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 998, 435, 615, 45 using Euclid's Algorithm?
Answer: For arbitrary numbers 998, 435, 615, 45 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.