Highest Common Factor of 998, 819, 536 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 998, 819, 536 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 998, 819, 536 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 998, 819, 536 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 998, 819, 536 is 1.

HCF(998, 819, 536) = 1

HCF of 998, 819, 536 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 998, 819, 536 is 1.

Highest Common Factor of 998,819,536 using Euclid's algorithm

Highest Common Factor of 998,819,536 is 1

Step 1: Since 998 > 819, we apply the division lemma to 998 and 819, to get

998 = 819 x 1 + 179

Step 2: Since the reminder 819 ≠ 0, we apply division lemma to 179 and 819, to get

819 = 179 x 4 + 103

Step 3: We consider the new divisor 179 and the new remainder 103, and apply the division lemma to get

179 = 103 x 1 + 76

We consider the new divisor 103 and the new remainder 76,and apply the division lemma to get

103 = 76 x 1 + 27

We consider the new divisor 76 and the new remainder 27,and apply the division lemma to get

76 = 27 x 2 + 22

We consider the new divisor 27 and the new remainder 22,and apply the division lemma to get

27 = 22 x 1 + 5

We consider the new divisor 22 and the new remainder 5,and apply the division lemma to get

22 = 5 x 4 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 998 and 819 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(22,5) = HCF(27,22) = HCF(76,27) = HCF(103,76) = HCF(179,103) = HCF(819,179) = HCF(998,819) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 536 > 1, we apply the division lemma to 536 and 1, to get

536 = 1 x 536 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 536 is 1

Notice that 1 = HCF(536,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 998, 819, 536 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 998, 819, 536?

Answer: HCF of 998, 819, 536 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 998, 819, 536 using Euclid's Algorithm?

Answer: For arbitrary numbers 998, 819, 536 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.