Highest Common Factor of 9981, 8392 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 9981, 8392 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 9981, 8392 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 9981, 8392 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 9981, 8392 is 1.

HCF(9981, 8392) = 1

HCF of 9981, 8392 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 9981, 8392 is 1.

Highest Common Factor of 9981,8392 using Euclid's algorithm

Highest Common Factor of 9981,8392 is 1

Step 1: Since 9981 > 8392, we apply the division lemma to 9981 and 8392, to get

9981 = 8392 x 1 + 1589

Step 2: Since the reminder 8392 ≠ 0, we apply division lemma to 1589 and 8392, to get

8392 = 1589 x 5 + 447

Step 3: We consider the new divisor 1589 and the new remainder 447, and apply the division lemma to get

1589 = 447 x 3 + 248

We consider the new divisor 447 and the new remainder 248,and apply the division lemma to get

447 = 248 x 1 + 199

We consider the new divisor 248 and the new remainder 199,and apply the division lemma to get

248 = 199 x 1 + 49

We consider the new divisor 199 and the new remainder 49,and apply the division lemma to get

199 = 49 x 4 + 3

We consider the new divisor 49 and the new remainder 3,and apply the division lemma to get

49 = 3 x 16 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 9981 and 8392 is 1

Notice that 1 = HCF(3,1) = HCF(49,3) = HCF(199,49) = HCF(248,199) = HCF(447,248) = HCF(1589,447) = HCF(8392,1589) = HCF(9981,8392) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 9981, 8392 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 9981, 8392?

Answer: HCF of 9981, 8392 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 9981, 8392 using Euclid's Algorithm?

Answer: For arbitrary numbers 9981, 8392 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.