Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 999, 694, 175 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 999, 694, 175 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 999, 694, 175 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 999, 694, 175 is 1.
HCF(999, 694, 175) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 999, 694, 175 is 1.
Step 1: Since 999 > 694, we apply the division lemma to 999 and 694, to get
999 = 694 x 1 + 305
Step 2: Since the reminder 694 ≠ 0, we apply division lemma to 305 and 694, to get
694 = 305 x 2 + 84
Step 3: We consider the new divisor 305 and the new remainder 84, and apply the division lemma to get
305 = 84 x 3 + 53
We consider the new divisor 84 and the new remainder 53,and apply the division lemma to get
84 = 53 x 1 + 31
We consider the new divisor 53 and the new remainder 31,and apply the division lemma to get
53 = 31 x 1 + 22
We consider the new divisor 31 and the new remainder 22,and apply the division lemma to get
31 = 22 x 1 + 9
We consider the new divisor 22 and the new remainder 9,and apply the division lemma to get
22 = 9 x 2 + 4
We consider the new divisor 9 and the new remainder 4,and apply the division lemma to get
9 = 4 x 2 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 999 and 694 is 1
Notice that 1 = HCF(4,1) = HCF(9,4) = HCF(22,9) = HCF(31,22) = HCF(53,31) = HCF(84,53) = HCF(305,84) = HCF(694,305) = HCF(999,694) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 175 > 1, we apply the division lemma to 175 and 1, to get
175 = 1 x 175 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 175 is 1
Notice that 1 = HCF(175,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 999, 694, 175?
Answer: HCF of 999, 694, 175 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 999, 694, 175 using Euclid's Algorithm?
Answer: For arbitrary numbers 999, 694, 175 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.