Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Free LCM Calculator determines the least common multiple (LCM) between 10320 and 10324 the smallest integer that is 26635920 that is divisible by both numbers.
Least Common Multiple (LCM) of 10320 and 10324 is 26635920.
LCM(10320,10324) = 26635920
Least common multiple or lowest common denominator (LCD) can be calculated in three ways;
Least common multiple can be found by multiplying the highest exponent prime factors of 10320 and 10324. First we will calculate the prime factors of 10320 and 10324.
Prime Factorization of 10320
2 | 10320 |
2 | 5160 |
2 | 2580 |
2 | 1290 |
3 | 645 |
5 | 215 |
43 | 43 |
1 |
Prime factors of 10320 are 2, 3, 5,43. Prime factorization of 10320 in exponential form is:
10320 = 24×31×51×431
Prime Factorization of 10324
2 | 10324 |
2 | 5162 |
29 | 2581 |
89 | 89 |
1 |
Prime factors of 10324 are 2, 29,89. Prime factorization of 10324 in exponential form is:
10324 = 22×291×891
Now multiplying the highest exponent prime factors to calculate the LCM of 10320 and 10324.
LCM(10320,10324) = 24×31×51×291×431×891
LCM(10320,10324) = 26635920
Factors of 10320
List of positive integer factors of 10320 that divides 10320 without a remainder.
1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 43, 48, 60, 80, 86, 120, 129, 172, 215, 240, 258, 344, 430, 516, 645, 688, 860, 1032, 1290, 1720, 2064, 2580, 3440, 5160, 10320
Factors of 10324
List of positive integer factors of 10324 that divides 10324 without a remainder.
1, 2, 4, 29, 58, 89, 116, 178, 356, 2581, 5162, 10324
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 10320 and 10324, than apply into the LCM equation.
GCF(10320,10324) = 4
LCM(10320,10324) = ( 10320 × 10324) / 4
LCM(10320,10324) = 106543680 / 4
LCM(10320,10324) = 26635920
(i) The LCM of 10324 and 10320 is associative
LCM of 10320 and 10324 = LCM of 10324 and 10320
1. What is the LCM of 10320 and 10324?
Answer: LCM of 10320 and 10324 is 26635920.
2. What are the Factors of 10320?
Answer: Factors of 10320 are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 43, 48, 60, 80, 86, 120, 129, 172, 215, 240, 258, 344, 430, 516, 645, 688, 860, 1032, 1290, 1720, 2064, 2580, 3440, 5160, 10320. There are 40 integers that are factors of 10320. The greatest factor of 10320 is 10320.
3. What are the Factors of 10324?
Answer: Factors of 10324 are 1, 2, 4, 29, 58, 89, 116, 178, 356, 2581, 5162, 10324. There are 12 integers that are factors of 10324. The greatest factor of 10324 is 10324.
4. How to Find the LCM of 10320 and 10324?
Answer:
Least Common Multiple of 10320 and 10324 = 26635920
Step 1: Find the prime factorization of 10320
10320 = 2 x 2 x 2 x 2 x 3 x 5 x 43
Step 2: Find the prime factorization of 10324
10324 = 2 x 2 x 29 x 89
Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:
LCM = 26635920 = 2 x 2 x 2 x 2 x 3 x 5 x 29 x 43 x 89
Step 4: Therefore, the least common multiple of 10320 and 10324 is 26635920.