Least Common Multiple of 3095 and 3102

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


Free LCM Calculator determines the least common multiple (LCM) between 3095 and 3102 the smallest integer that is 9600690 that is divisible by both numbers.

Least Common Multiple (LCM) of 3095 and 3102 is 9600690.

LCM(3095,3102) = 9600690

LCM of 3095 and 3102

Least common multiple or lowest common denominator (LCD) can be calculated in three ways;

LCM of:
and

Least Common Multiple of 3095 and 3102

LCM of 3095 and 3102 is 9600690

Least common multiple can be found by multiplying the highest exponent prime factors of 3095 and 3102. First we will calculate the prime factors of 3095 and 3102.

Prime Factorization of 3095


5 3095
619 619
1

Prime factors of 3095 are 5,619. Prime factorization of 3095 in exponential form is:

3095 = 51×6191

Prime Factorization of 3102


2 3102
3 1551
11 517
47 47
1

Prime factors of 3102 are 2, 3, 11,47. Prime factorization of 3102 in exponential form is:

3102 = 21×31×111×471

Now multiplying the highest exponent prime factors to calculate the LCM of 3095 and 3102.

LCM(3095,3102) = 21×31×51×111×471×6191
LCM(3095,3102) = 9600690

Factors of 3095

List of positive integer factors of 3095 that divides 3095 without a remainder.

1, 5, 619, 3095

Factors of 3102

List of positive integer factors of 3102 that divides 3102 without a remainder.

1, 2, 3, 6, 11, 22, 33, 47, 66, 94, 141, 282, 517, 1034, 1551, 3102

Least Common Multiple of 3095 and 3102 with GCF Formula

The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 3095 and 3102, than apply into the LCM equation.

GCF(3095,3102) = 1
LCM(3095,3102) = ( 3095 × 3102) / 1
LCM(3095,3102) = 9600690 / 1
LCM(3095,3102) = 9600690

Properties of LCM 3095 and 3102

(i) The LCM of 3102 and 3095 is associative

LCM of 3095 and 3102 = LCM of 3102 and 3095

Frequently Asked Questions on LCM of 3095 and 3102

1. What is the LCM of 3095 and 3102?

Answer: LCM of 3095 and 3102 is 9600690.

2. What are the Factors of 3095?

Answer: Factors of 3095 are 1, 5, 619, 3095. There are 4 integers that are factors of 3095. The greatest factor of 3095 is 3095.

3. What are the Factors of 3102?

Answer: Factors of 3102 are 1, 2, 3, 6, 11, 22, 33, 47, 66, 94, 141, 282, 517, 1034, 1551, 3102. There are 16 integers that are factors of 3102. The greatest factor of 3102 is 3102.

4. How to Find the LCM of 3095 and 3102?

Answer:

Least Common Multiple of 3095 and 3102 = 9600690

Step 1: Find the prime factorization of 3095

3095 = 5 x 619

Step 2: Find the prime factorization of 3102

3102 = 2 x 3 x 11 x 47

Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:

LCM = 9600690 = 2 x 3 x 5 x 11 x 47 x 619

Step 4: Therefore, the least common multiple of 3095 and 3102 is 9600690.