Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Free LCM Calculator determines the least common multiple (LCM) between 3116 and 3120 the smallest integer that is 2430480 that is divisible by both numbers.
Least Common Multiple (LCM) of 3116 and 3120 is 2430480.
LCM(3116,3120) = 2430480
Least common multiple or lowest common denominator (LCD) can be calculated in three ways;
Least common multiple can be found by multiplying the highest exponent prime factors of 3116 and 3120. First we will calculate the prime factors of 3116 and 3120.
Prime Factorization of 3116
2 | 3116 |
2 | 1558 |
19 | 779 |
41 | 41 |
1 |
Prime factors of 3116 are 2, 19,41. Prime factorization of 3116 in exponential form is:
3116 = 22×191×411
Prime Factorization of 3120
2 | 3120 |
2 | 1560 |
2 | 780 |
2 | 390 |
3 | 195 |
5 | 65 |
13 | 13 |
1 |
Prime factors of 3120 are 2, 3, 5,13. Prime factorization of 3120 in exponential form is:
3120 = 24×31×51×131
Now multiplying the highest exponent prime factors to calculate the LCM of 3116 and 3120.
LCM(3116,3120) = 24×31×51×131×191×411
LCM(3116,3120) = 2430480
Factors of 3116
List of positive integer factors of 3116 that divides 3116 without a remainder.
1, 2, 4, 19, 38, 41, 76, 82, 164, 779, 1558, 3116
Factors of 3120
List of positive integer factors of 3120 that divides 3120 without a remainder.
1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 15, 16, 20, 24, 26, 30, 39, 40, 48, 52, 60, 65, 78, 80, 104, 120, 130, 156, 195, 208, 240, 260, 312, 390, 520, 624, 780, 1040, 1560, 3120
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 3116 and 3120, than apply into the LCM equation.
GCF(3116,3120) = 4
LCM(3116,3120) = ( 3116 × 3120) / 4
LCM(3116,3120) = 9721920 / 4
LCM(3116,3120) = 2430480
(i) The LCM of 3120 and 3116 is associative
LCM of 3116 and 3120 = LCM of 3120 and 3116
1. What is the LCM of 3116 and 3120?
Answer: LCM of 3116 and 3120 is 2430480.
2. What are the Factors of 3116?
Answer: Factors of 3116 are 1, 2, 4, 19, 38, 41, 76, 82, 164, 779, 1558, 3116. There are 12 integers that are factors of 3116. The greatest factor of 3116 is 3116.
3. What are the Factors of 3120?
Answer: Factors of 3120 are 1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 15, 16, 20, 24, 26, 30, 39, 40, 48, 52, 60, 65, 78, 80, 104, 120, 130, 156, 195, 208, 240, 260, 312, 390, 520, 624, 780, 1040, 1560, 3120. There are 40 integers that are factors of 3120. The greatest factor of 3120 is 3120.
4. How to Find the LCM of 3116 and 3120?
Answer:
Least Common Multiple of 3116 and 3120 = 2430480
Step 1: Find the prime factorization of 3116
3116 = 2 x 2 x 19 x 41
Step 2: Find the prime factorization of 3120
3120 = 2 x 2 x 2 x 2 x 3 x 5 x 13
Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:
LCM = 2430480 = 2 x 2 x 2 x 2 x 3 x 5 x 13 x 19 x 41
Step 4: Therefore, the least common multiple of 3116 and 3120 is 2430480.