Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Free LCM Calculator determines the least common multiple (LCM) between 31469 and 31475 the smallest integer that is 990486775 that is divisible by both numbers.
Least Common Multiple (LCM) of 31469 and 31475 is 990486775.
LCM(31469,31475) = 990486775
Least common multiple or lowest common denominator (LCD) can be calculated in three ways;
Least common multiple can be found by multiplying the highest exponent prime factors of 31469 and 31475. First we will calculate the prime factors of 31469 and 31475.
Prime Factorization of 31469
31469 | 31469 |
1 |
Prime factors of 31469 are 31469. Prime factorization of 31469 in exponential form is:
31469 = 314691
Prime Factorization of 31475
5 | 31475 |
5 | 6295 |
1259 | 1259 |
1 |
Prime factors of 31475 are 5,1259. Prime factorization of 31475 in exponential form is:
31475 = 52×12591
Now multiplying the highest exponent prime factors to calculate the LCM of 31469 and 31475.
LCM(31469,31475) = 52×12591×314691
LCM(31469,31475) = 990486775
Factors of 31469
List of positive integer factors of 31469 that divides 31469 without a remainder.
1, 31469
Factors of 31475
List of positive integer factors of 31475 that divides 31475 without a remainder.
1, 5, 25, 1259, 6295, 31475
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 31469 and 31475, than apply into the LCM equation.
GCF(31469,31475) = 1
LCM(31469,31475) = ( 31469 × 31475) / 1
LCM(31469,31475) = 990486775 / 1
LCM(31469,31475) = 990486775
(i) The LCM of 31475 and 31469 is associative
LCM of 31469 and 31475 = LCM of 31475 and 31469
1. What is the LCM of 31469 and 31475?
Answer: LCM of 31469 and 31475 is 990486775.
2. What are the Factors of 31469?
Answer: Factors of 31469 are 1, 31469. There are 2 integers that are factors of 31469. The greatest factor of 31469 is 31469.
3. What are the Factors of 31475?
Answer: Factors of 31475 are 1, 5, 25, 1259, 6295, 31475. There are 6 integers that are factors of 31475. The greatest factor of 31475 is 31475.
4. How to Find the LCM of 31469 and 31475?
Answer:
Least Common Multiple of 31469 and 31475 = 990486775
Step 1: Find the prime factorization of 31469
31469 = 31469
Step 2: Find the prime factorization of 31475
31475 = 5 x 5 x 1259
Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:
LCM = 990486775 = 5 x 5 x 1259 x 31469
Step 4: Therefore, the least common multiple of 31469 and 31475 is 990486775.