Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Free LCM Calculator determines the least common multiple (LCM) between 321418 and 321424 the smallest integer that is 51655729616 that is divisible by both numbers.
Least Common Multiple (LCM) of 321418 and 321424 is 51655729616.
LCM(321418,321424) = 51655729616
Least common multiple or lowest common denominator (LCD) can be calculated in three ways;
Least common multiple can be found by multiplying the highest exponent prime factors of 321418 and 321424. First we will calculate the prime factors of 321418 and 321424.
Prime Factorization of 321418
2 | 321418 |
160709 | 160709 |
1 |
Prime factors of 321418 are 2,160709. Prime factorization of 321418 in exponential form is:
321418 = 21×1607091
Prime Factorization of 321424
2 | 321424 |
2 | 160712 |
2 | 80356 |
2 | 40178 |
20089 | 20089 |
1 |
Prime factors of 321424 are 2,20089. Prime factorization of 321424 in exponential form is:
321424 = 24×200891
Now multiplying the highest exponent prime factors to calculate the LCM of 321418 and 321424.
LCM(321418,321424) = 24×200891×1607091
LCM(321418,321424) = 51655729616
Factors of 321418
List of positive integer factors of 321418 that divides 321418 without a remainder.
1, 2, 160709, 321418
Factors of 321424
List of positive integer factors of 321424 that divides 321424 without a remainder.
1, 2, 4, 8, 16, 20089, 40178, 80356, 160712, 321424
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 321418 and 321424, than apply into the LCM equation.
GCF(321418,321424) = 2
LCM(321418,321424) = ( 321418 × 321424) / 2
LCM(321418,321424) = 103311459232 / 2
LCM(321418,321424) = 51655729616
(i) The LCM of 321424 and 321418 is associative
LCM of 321418 and 321424 = LCM of 321424 and 321418
1. What is the LCM of 321418 and 321424?
Answer: LCM of 321418 and 321424 is 51655729616.
2. What are the Factors of 321418?
Answer: Factors of 321418 are 1, 2, 160709, 321418. There are 4 integers that are factors of 321418. The greatest factor of 321418 is 321418.
3. What are the Factors of 321424?
Answer: Factors of 321424 are 1, 2, 4, 8, 16, 20089, 40178, 80356, 160712, 321424. There are 10 integers that are factors of 321424. The greatest factor of 321424 is 321424.
4. How to Find the LCM of 321418 and 321424?
Answer:
Least Common Multiple of 321418 and 321424 = 51655729616
Step 1: Find the prime factorization of 321418
321418 = 2 x 160709
Step 2: Find the prime factorization of 321424
321424 = 2 x 2 x 2 x 2 x 20089
Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:
LCM = 51655729616 = 2 x 2 x 2 x 2 x 20089 x 160709
Step 4: Therefore, the least common multiple of 321418 and 321424 is 51655729616.