Least Common Multiple of 3360 and 3368

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


Free LCM Calculator determines the least common multiple (LCM) between 3360 and 3368 the smallest integer that is 1414560 that is divisible by both numbers.

Least Common Multiple (LCM) of 3360 and 3368 is 1414560.

LCM(3360,3368) = 1414560

LCM of 3360 and 3368

Least common multiple or lowest common denominator (LCD) can be calculated in three ways;

LCM of:
and

Least Common Multiple of 3360 and 3368

LCM of 3360 and 3368 is 1414560

Least common multiple can be found by multiplying the highest exponent prime factors of 3360 and 3368. First we will calculate the prime factors of 3360 and 3368.

Prime Factorization of 3360


2 3360
2 1680
2 840
2 420
2 210
3 105
5 35
7 7
1

Prime factors of 3360 are 2, 3, 5,7. Prime factorization of 3360 in exponential form is:

3360 = 25×31×51×71

Prime Factorization of 3368


2 3368
2 1684
2 842
421 421
1

Prime factors of 3368 are 2,421. Prime factorization of 3368 in exponential form is:

3368 = 23×4211

Now multiplying the highest exponent prime factors to calculate the LCM of 3360 and 3368.

LCM(3360,3368) = 25×31×51×71×4211
LCM(3360,3368) = 1414560

Factors of 3360

List of positive integer factors of 3360 that divides 3360 without a remainder.

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24, 28, 30, 32, 35, 40, 42, 48, 56, 60, 70, 80, 84, 96, 105, 112, 120, 140, 160, 168, 210, 224, 240, 280, 336, 420, 480, 560, 672, 840, 1120, 1680, 3360

Factors of 3368

List of positive integer factors of 3368 that divides 3368 without a remainder.

1, 2, 4, 8, 421, 842, 1684, 3368

Least Common Multiple of 3360 and 3368 with GCF Formula

The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 3360 and 3368, than apply into the LCM equation.

GCF(3360,3368) = 8
LCM(3360,3368) = ( 3360 × 3368) / 8
LCM(3360,3368) = 11316480 / 8
LCM(3360,3368) = 1414560

Properties of LCM 3360 and 3368

(i) The LCM of 3368 and 3360 is associative

LCM of 3360 and 3368 = LCM of 3368 and 3360

Frequently Asked Questions on LCM of 3360 and 3368

1. What is the LCM of 3360 and 3368?

Answer: LCM of 3360 and 3368 is 1414560.

2. What are the Factors of 3360?

Answer: Factors of 3360 are 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24, 28, 30, 32, 35, 40, 42, 48, 56, 60, 70, 80, 84, 96, 105, 112, 120, 140, 160, 168, 210, 224, 240, 280, 336, 420, 480, 560, 672, 840, 1120, 1680, 3360. There are 48 integers that are factors of 3360. The greatest factor of 3360 is 3360.

3. What are the Factors of 3368?

Answer: Factors of 3368 are 1, 2, 4, 8, 421, 842, 1684, 3368. There are 8 integers that are factors of 3368. The greatest factor of 3368 is 3368.

4. How to Find the LCM of 3360 and 3368?

Answer:

Least Common Multiple of 3360 and 3368 = 1414560

Step 1: Find the prime factorization of 3360

3360 = 2 x 2 x 2 x 2 x 2 x 3 x 5 x 7

Step 2: Find the prime factorization of 3368

3368 = 2 x 2 x 2 x 421

Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:

LCM = 1414560 = 2 x 2 x 2 x 2 x 2 x 3 x 5 x 7 x 421

Step 4: Therefore, the least common multiple of 3360 and 3368 is 1414560.