Least Common Multiple of 3383 and 3390

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


Free LCM Calculator determines the least common multiple (LCM) between 3383 and 3390 the smallest integer that is 11468370 that is divisible by both numbers.

Least Common Multiple (LCM) of 3383 and 3390 is 11468370.

LCM(3383,3390) = 11468370

LCM of 3383 and 3390

Least common multiple or lowest common denominator (LCD) can be calculated in three ways;

LCM of:
and

Least Common Multiple of 3383 and 3390

LCM of 3383 and 3390 is 11468370

Least common multiple can be found by multiplying the highest exponent prime factors of 3383 and 3390. First we will calculate the prime factors of 3383 and 3390.

Prime Factorization of 3383


17 3383
199 199
1

Prime factors of 3383 are 17,199. Prime factorization of 3383 in exponential form is:

3383 = 171×1991

Prime Factorization of 3390


2 3390
3 1695
5 565
113 113
1

Prime factors of 3390 are 2, 3, 5,113. Prime factorization of 3390 in exponential form is:

3390 = 21×31×51×1131

Now multiplying the highest exponent prime factors to calculate the LCM of 3383 and 3390.

LCM(3383,3390) = 21×31×51×171×1131×1991
LCM(3383,3390) = 11468370

Factors of 3383

List of positive integer factors of 3383 that divides 3383 without a remainder.

1, 17, 199, 3383

Factors of 3390

List of positive integer factors of 3390 that divides 3390 without a remainder.

1, 2, 3, 5, 6, 10, 15, 30, 113, 226, 339, 565, 678, 1130, 1695, 3390

Least Common Multiple of 3383 and 3390 with GCF Formula

The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 3383 and 3390, than apply into the LCM equation.

GCF(3383,3390) = 1
LCM(3383,3390) = ( 3383 × 3390) / 1
LCM(3383,3390) = 11468370 / 1
LCM(3383,3390) = 11468370

Properties of LCM 3383 and 3390

(i) The LCM of 3390 and 3383 is associative

LCM of 3383 and 3390 = LCM of 3390 and 3383

Frequently Asked Questions on LCM of 3383 and 3390

1. What is the LCM of 3383 and 3390?

Answer: LCM of 3383 and 3390 is 11468370.

2. What are the Factors of 3383?

Answer: Factors of 3383 are 1, 17, 199, 3383. There are 4 integers that are factors of 3383. The greatest factor of 3383 is 3383.

3. What are the Factors of 3390?

Answer: Factors of 3390 are 1, 2, 3, 5, 6, 10, 15, 30, 113, 226, 339, 565, 678, 1130, 1695, 3390. There are 16 integers that are factors of 3390. The greatest factor of 3390 is 3390.

4. How to Find the LCM of 3383 and 3390?

Answer:

Least Common Multiple of 3383 and 3390 = 11468370

Step 1: Find the prime factorization of 3383

3383 = 17 x 199

Step 2: Find the prime factorization of 3390

3390 = 2 x 3 x 5 x 113

Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:

LCM = 11468370 = 2 x 3 x 5 x 17 x 113 x 199

Step 4: Therefore, the least common multiple of 3383 and 3390 is 11468370.