Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Free LCM Calculator determines the least common multiple (LCM) between 3425 and 3433 the smallest integer that is 11758025 that is divisible by both numbers.
Least Common Multiple (LCM) of 3425 and 3433 is 11758025.
LCM(3425,3433) = 11758025
Least common multiple or lowest common denominator (LCD) can be calculated in three ways;
Least common multiple can be found by multiplying the highest exponent prime factors of 3425 and 3433. First we will calculate the prime factors of 3425 and 3433.
Prime Factorization of 3425
5 | 3425 |
5 | 685 |
137 | 137 |
1 |
Prime factors of 3425 are 5,137. Prime factorization of 3425 in exponential form is:
3425 = 52×1371
Prime Factorization of 3433
3433 | 3433 |
1 |
Prime factors of 3433 are 3433. Prime factorization of 3433 in exponential form is:
3433 = 34331
Now multiplying the highest exponent prime factors to calculate the LCM of 3425 and 3433.
LCM(3425,3433) = 52×1371×34331
LCM(3425,3433) = 11758025
Factors of 3425
List of positive integer factors of 3425 that divides 3425 without a remainder.
1, 5, 25, 137, 685, 3425
Factors of 3433
List of positive integer factors of 3433 that divides 3433 without a remainder.
1, 3433
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 3425 and 3433, than apply into the LCM equation.
GCF(3425,3433) = 1
LCM(3425,3433) = ( 3425 × 3433) / 1
LCM(3425,3433) = 11758025 / 1
LCM(3425,3433) = 11758025
(i) The LCM of 3433 and 3425 is associative
LCM of 3425 and 3433 = LCM of 3433 and 3425
1. What is the LCM of 3425 and 3433?
Answer: LCM of 3425 and 3433 is 11758025.
2. What are the Factors of 3425?
Answer: Factors of 3425 are 1, 5, 25, 137, 685, 3425. There are 6 integers that are factors of 3425. The greatest factor of 3425 is 3425.
3. What are the Factors of 3433?
Answer: Factors of 3433 are 1, 3433. There are 2 integers that are factors of 3433. The greatest factor of 3433 is 3433.
4. How to Find the LCM of 3425 and 3433?
Answer:
Least Common Multiple of 3425 and 3433 = 11758025
Step 1: Find the prime factorization of 3425
3425 = 5 x 5 x 137
Step 2: Find the prime factorization of 3433
3433 = 3433
Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:
LCM = 11758025 = 5 x 5 x 137 x 3433
Step 4: Therefore, the least common multiple of 3425 and 3433 is 11758025.