Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Free LCM Calculator determines the least common multiple (LCM) between 3984 and 3990 the smallest integer that is 2649360 that is divisible by both numbers.
Least Common Multiple (LCM) of 3984 and 3990 is 2649360.
LCM(3984,3990) = 2649360
Least common multiple or lowest common denominator (LCD) can be calculated in three ways;
Least common multiple can be found by multiplying the highest exponent prime factors of 3984 and 3990. First we will calculate the prime factors of 3984 and 3990.
Prime Factorization of 3984
2 | 3984 |
2 | 1992 |
2 | 996 |
2 | 498 |
3 | 249 |
83 | 83 |
1 |
Prime factors of 3984 are 2, 3,83. Prime factorization of 3984 in exponential form is:
3984 = 24×31×831
Prime Factorization of 3990
2 | 3990 |
3 | 1995 |
5 | 665 |
7 | 133 |
19 | 19 |
1 |
Prime factors of 3990 are 2, 3, 5, 7,19. Prime factorization of 3990 in exponential form is:
3990 = 21×31×51×71×191
Now multiplying the highest exponent prime factors to calculate the LCM of 3984 and 3990.
LCM(3984,3990) = 24×31×51×71×191×831
LCM(3984,3990) = 2649360
Factors of 3984
List of positive integer factors of 3984 that divides 3984 without a remainder.
1, 2, 3, 4, 6, 8, 12, 16, 24, 48, 83, 166, 249, 332, 498, 664, 996, 1328, 1992, 3984
Factors of 3990
List of positive integer factors of 3990 that divides 3990 without a remainder.
1, 2, 3, 5, 6, 7, 10, 14, 15, 19, 21, 30, 35, 38, 42, 57, 70, 95, 105, 114, 133, 190, 210, 266, 285, 399, 570, 665, 798, 1330, 1995, 3990
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 3984 and 3990, than apply into the LCM equation.
GCF(3984,3990) = 6
LCM(3984,3990) = ( 3984 × 3990) / 6
LCM(3984,3990) = 15896160 / 6
LCM(3984,3990) = 2649360
(i) The LCM of 3990 and 3984 is associative
LCM of 3984 and 3990 = LCM of 3990 and 3984
1. What is the LCM of 3984 and 3990?
Answer: LCM of 3984 and 3990 is 2649360.
2. What are the Factors of 3984?
Answer: Factors of 3984 are 1, 2, 3, 4, 6, 8, 12, 16, 24, 48, 83, 166, 249, 332, 498, 664, 996, 1328, 1992, 3984. There are 20 integers that are factors of 3984. The greatest factor of 3984 is 3984.
3. What are the Factors of 3990?
Answer: Factors of 3990 are 1, 2, 3, 5, 6, 7, 10, 14, 15, 19, 21, 30, 35, 38, 42, 57, 70, 95, 105, 114, 133, 190, 210, 266, 285, 399, 570, 665, 798, 1330, 1995, 3990. There are 32 integers that are factors of 3990. The greatest factor of 3990 is 3990.
4. How to Find the LCM of 3984 and 3990?
Answer:
Least Common Multiple of 3984 and 3990 = 2649360
Step 1: Find the prime factorization of 3984
3984 = 2 x 2 x 2 x 2 x 3 x 83
Step 2: Find the prime factorization of 3990
3990 = 2 x 3 x 5 x 7 x 19
Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:
LCM = 2649360 = 2 x 2 x 2 x 2 x 3 x 5 x 7 x 19 x 83
Step 4: Therefore, the least common multiple of 3984 and 3990 is 2649360.