Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Free LCM Calculator determines the least common multiple (LCM) between 5084 and 5091 the smallest integer that is 25882644 that is divisible by both numbers.
Least Common Multiple (LCM) of 5084 and 5091 is 25882644.
LCM(5084,5091) = 25882644
Least common multiple or lowest common denominator (LCD) can be calculated in three ways;
Least common multiple can be found by multiplying the highest exponent prime factors of 5084 and 5091. First we will calculate the prime factors of 5084 and 5091.
Prime Factorization of 5084
2 | 5084 |
2 | 2542 |
31 | 1271 |
41 | 41 |
1 |
Prime factors of 5084 are 2, 31,41. Prime factorization of 5084 in exponential form is:
5084 = 22×311×411
Prime Factorization of 5091
3 | 5091 |
1697 | 1697 |
1 |
Prime factors of 5091 are 3,1697. Prime factorization of 5091 in exponential form is:
5091 = 31×16971
Now multiplying the highest exponent prime factors to calculate the LCM of 5084 and 5091.
LCM(5084,5091) = 22×31×311×411×16971
LCM(5084,5091) = 25882644
Factors of 5084
List of positive integer factors of 5084 that divides 5084 without a remainder.
1, 2, 4, 31, 41, 62, 82, 124, 164, 1271, 2542, 5084
Factors of 5091
List of positive integer factors of 5091 that divides 5091 without a remainder.
1, 3, 1697, 5091
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 5084 and 5091, than apply into the LCM equation.
GCF(5084,5091) = 1
LCM(5084,5091) = ( 5084 × 5091) / 1
LCM(5084,5091) = 25882644 / 1
LCM(5084,5091) = 25882644
(i) The LCM of 5091 and 5084 is associative
LCM of 5084 and 5091 = LCM of 5091 and 5084
1. What is the LCM of 5084 and 5091?
Answer: LCM of 5084 and 5091 is 25882644.
2. What are the Factors of 5084?
Answer: Factors of 5084 are 1, 2, 4, 31, 41, 62, 82, 124, 164, 1271, 2542, 5084. There are 12 integers that are factors of 5084. The greatest factor of 5084 is 5084.
3. What are the Factors of 5091?
Answer: Factors of 5091 are 1, 3, 1697, 5091. There are 4 integers that are factors of 5091. The greatest factor of 5091 is 5091.
4. How to Find the LCM of 5084 and 5091?
Answer:
Least Common Multiple of 5084 and 5091 = 25882644
Step 1: Find the prime factorization of 5084
5084 = 2 x 2 x 31 x 41
Step 2: Find the prime factorization of 5091
5091 = 3 x 1697
Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:
LCM = 25882644 = 2 x 2 x 3 x 31 x 41 x 1697
Step 4: Therefore, the least common multiple of 5084 and 5091 is 25882644.