Least Common Multiple of 5392 and 5396

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


Free LCM Calculator determines the least common multiple (LCM) between 5392 and 5396 the smallest integer that is 7273808 that is divisible by both numbers.

Least Common Multiple (LCM) of 5392 and 5396 is 7273808.

LCM(5392,5396) = 7273808

LCM of 5392 and 5396

Least common multiple or lowest common denominator (LCD) can be calculated in three ways;

LCM of:
and

Least Common Multiple of 5392 and 5396

LCM of 5392 and 5396 is 7273808

Least common multiple can be found by multiplying the highest exponent prime factors of 5392 and 5396. First we will calculate the prime factors of 5392 and 5396.

Prime Factorization of 5392


2 5392
2 2696
2 1348
2 674
337 337
1

Prime factors of 5392 are 2,337. Prime factorization of 5392 in exponential form is:

5392 = 24×3371

Prime Factorization of 5396


2 5396
2 2698
19 1349
71 71
1

Prime factors of 5396 are 2, 19,71. Prime factorization of 5396 in exponential form is:

5396 = 22×191×711

Now multiplying the highest exponent prime factors to calculate the LCM of 5392 and 5396.

LCM(5392,5396) = 24×191×711×3371
LCM(5392,5396) = 7273808

Factors of 5392

List of positive integer factors of 5392 that divides 5392 without a remainder.

1, 2, 4, 8, 16, 337, 674, 1348, 2696, 5392

Factors of 5396

List of positive integer factors of 5396 that divides 5396 without a remainder.

1, 2, 4, 19, 38, 71, 76, 142, 284, 1349, 2698, 5396

Least Common Multiple of 5392 and 5396 with GCF Formula

The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 5392 and 5396, than apply into the LCM equation.

GCF(5392,5396) = 4
LCM(5392,5396) = ( 5392 × 5396) / 4
LCM(5392,5396) = 29095232 / 4
LCM(5392,5396) = 7273808

Properties of LCM 5392 and 5396

(i) The LCM of 5396 and 5392 is associative

LCM of 5392 and 5396 = LCM of 5396 and 5392

Frequently Asked Questions on LCM of 5392 and 5396

1. What is the LCM of 5392 and 5396?

Answer: LCM of 5392 and 5396 is 7273808.

2. What are the Factors of 5392?

Answer: Factors of 5392 are 1, 2, 4, 8, 16, 337, 674, 1348, 2696, 5392. There are 10 integers that are factors of 5392. The greatest factor of 5392 is 5392.

3. What are the Factors of 5396?

Answer: Factors of 5396 are 1, 2, 4, 19, 38, 71, 76, 142, 284, 1349, 2698, 5396. There are 12 integers that are factors of 5396. The greatest factor of 5396 is 5396.

4. How to Find the LCM of 5392 and 5396?

Answer:

Least Common Multiple of 5392 and 5396 = 7273808

Step 1: Find the prime factorization of 5392

5392 = 2 x 2 x 2 x 2 x 337

Step 2: Find the prime factorization of 5396

5396 = 2 x 2 x 19 x 71

Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:

LCM = 7273808 = 2 x 2 x 2 x 2 x 19 x 71 x 337

Step 4: Therefore, the least common multiple of 5392 and 5396 is 7273808.