Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Free LCM Calculator determines the least common multiple (LCM) between 5446 and 5452 the smallest integer that is 14845796 that is divisible by both numbers.
Least Common Multiple (LCM) of 5446 and 5452 is 14845796.
LCM(5446,5452) = 14845796
Least common multiple or lowest common denominator (LCD) can be calculated in three ways;
Least common multiple can be found by multiplying the highest exponent prime factors of 5446 and 5452. First we will calculate the prime factors of 5446 and 5452.
Prime Factorization of 5446
2 | 5446 |
7 | 2723 |
389 | 389 |
1 |
Prime factors of 5446 are 2, 7,389. Prime factorization of 5446 in exponential form is:
5446 = 21×71×3891
Prime Factorization of 5452
2 | 5452 |
2 | 2726 |
29 | 1363 |
47 | 47 |
1 |
Prime factors of 5452 are 2, 29,47. Prime factorization of 5452 in exponential form is:
5452 = 22×291×471
Now multiplying the highest exponent prime factors to calculate the LCM of 5446 and 5452.
LCM(5446,5452) = 22×71×291×471×3891
LCM(5446,5452) = 14845796
Factors of 5446
List of positive integer factors of 5446 that divides 5446 without a remainder.
1, 2, 7, 14, 389, 778, 2723, 5446
Factors of 5452
List of positive integer factors of 5452 that divides 5452 without a remainder.
1, 2, 4, 29, 47, 58, 94, 116, 188, 1363, 2726, 5452
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 5446 and 5452, than apply into the LCM equation.
GCF(5446,5452) = 2
LCM(5446,5452) = ( 5446 × 5452) / 2
LCM(5446,5452) = 29691592 / 2
LCM(5446,5452) = 14845796
(i) The LCM of 5452 and 5446 is associative
LCM of 5446 and 5452 = LCM of 5452 and 5446
1. What is the LCM of 5446 and 5452?
Answer: LCM of 5446 and 5452 is 14845796.
2. What are the Factors of 5446?
Answer: Factors of 5446 are 1, 2, 7, 14, 389, 778, 2723, 5446. There are 8 integers that are factors of 5446. The greatest factor of 5446 is 5446.
3. What are the Factors of 5452?
Answer: Factors of 5452 are 1, 2, 4, 29, 47, 58, 94, 116, 188, 1363, 2726, 5452. There are 12 integers that are factors of 5452. The greatest factor of 5452 is 5452.
4. How to Find the LCM of 5446 and 5452?
Answer:
Least Common Multiple of 5446 and 5452 = 14845796
Step 1: Find the prime factorization of 5446
5446 = 2 x 7 x 389
Step 2: Find the prime factorization of 5452
5452 = 2 x 2 x 29 x 47
Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:
LCM = 14845796 = 2 x 2 x 7 x 29 x 47 x 389
Step 4: Therefore, the least common multiple of 5446 and 5452 is 14845796.