Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Free LCM Calculator determines the least common multiple (LCM) between 7488 and 7494 the smallest integer that is 9352512 that is divisible by both numbers.
Least Common Multiple (LCM) of 7488 and 7494 is 9352512.
LCM(7488,7494) = 9352512
Least common multiple or lowest common denominator (LCD) can be calculated in three ways;
Least common multiple can be found by multiplying the highest exponent prime factors of 7488 and 7494. First we will calculate the prime factors of 7488 and 7494.
Prime Factorization of 7488
2 | 7488 |
2 | 3744 |
2 | 1872 |
2 | 936 |
2 | 468 |
2 | 234 |
3 | 117 |
3 | 39 |
13 | 13 |
1 |
Prime factors of 7488 are 2, 3,13. Prime factorization of 7488 in exponential form is:
7488 = 26×32×131
Prime Factorization of 7494
2 | 7494 |
3 | 3747 |
1249 | 1249 |
1 |
Prime factors of 7494 are 2, 3,1249. Prime factorization of 7494 in exponential form is:
7494 = 21×31×12491
Now multiplying the highest exponent prime factors to calculate the LCM of 7488 and 7494.
LCM(7488,7494) = 26×32×131×12491
LCM(7488,7494) = 9352512
Factors of 7488
List of positive integer factors of 7488 that divides 7488 without a remainder.
1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 24, 26, 32, 36, 39, 48, 52, 64, 72, 78, 96, 104, 117, 144, 156, 192, 208, 234, 288, 312, 416, 468, 576, 624, 832, 936, 1248, 1872, 2496, 3744, 7488
Factors of 7494
List of positive integer factors of 7494 that divides 7494 without a remainder.
1, 2, 3, 6, 1249, 2498, 3747, 7494
The formula of LCM is LCM(a,b) = ( a × b) / GCF(a,b).
We need to calculate greatest common factor 7488 and 7494, than apply into the LCM equation.
GCF(7488,7494) = 6
LCM(7488,7494) = ( 7488 × 7494) / 6
LCM(7488,7494) = 56115072 / 6
LCM(7488,7494) = 9352512
(i) The LCM of 7494 and 7488 is associative
LCM of 7488 and 7494 = LCM of 7494 and 7488
1. What is the LCM of 7488 and 7494?
Answer: LCM of 7488 and 7494 is 9352512.
2. What are the Factors of 7488?
Answer: Factors of 7488 are 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 24, 26, 32, 36, 39, 48, 52, 64, 72, 78, 96, 104, 117, 144, 156, 192, 208, 234, 288, 312, 416, 468, 576, 624, 832, 936, 1248, 1872, 2496, 3744, 7488. There are 42 integers that are factors of 7488. The greatest factor of 7488 is 7488.
3. What are the Factors of 7494?
Answer: Factors of 7494 are 1, 2, 3, 6, 1249, 2498, 3747, 7494. There are 8 integers that are factors of 7494. The greatest factor of 7494 is 7494.
4. How to Find the LCM of 7488 and 7494?
Answer:
Least Common Multiple of 7488 and 7494 = 9352512
Step 1: Find the prime factorization of 7488
7488 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 13
Step 2: Find the prime factorization of 7494
7494 = 2 x 3 x 1249
Step 3: Multiply each factor the greater number of times it occurs in steps i) or ii) above to find the lcm:
LCM = 9352512 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 13 x 1249
Step 4: Therefore, the least common multiple of 7488 and 7494 is 9352512.